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Abstract-Natural convection around a horizontal, isothermal cylinder buried in a fluid-saturated porous 
medium is modeled analytically using the Forchheimer-extended Darcy flow model. The governing equa- 
tions are solved numerically to obtain the flow field, the temperature distribution, and the local and average 
Nusselt numbers around the cylinder as functions of the cylinder depth, H, the modified Rayleigh number, 
Ra*, and the Darcy number, Da. The results show that the presence of an impermeable surface above the 
cylinder significantly alters the flow field and reduces the heat transfer from the cylinder. Recirculating 
zones may develop above the cylinder creating regions of low and high heat transfer rates. The Forchheimer 
term in the velocity equation reduces the flow velocity and, hence, the heat transfer for the case of large 
Darcy number and results in a significant decrease in the average Nusselt number around the cylinder 

when Red is greater than approximately five. 

INTRODUCTION 

NUMEROUS works in the literature analyzed the natu- 
ral convection in a fluid-saturated porous medium 
along vertical plates or constrained in rectangular 
enclosures but few papers reported results for natural 
convection around a horizontal cylinder in a fluid- 
saturated porous medium. However, the natural con- 
vection around a buried oil or steam pipeline or a long 
set of buried nuclear waste canisters surrounded by 
water-saturated soil needs to be modeled using the 
equations for flow in fluid-saturated porous media. 
Our current work considers a pipeline or canister 
buried in water-saturated soil relatively near the soil 
surface or near an impermeable cover layer. The prox- 
imity of this surface drastically alters the flow field in 
the porous medium and reduces the heat transfer. 
The geometry is idealized as an infinite, isothermal, 
horizontal cylinder buried in a fluid-saturated porous 
medium with an impermeable surface above the cyl- 
inder. The flow field around the cylinder and the 
convective heat transfer away from the cylinder are 
modeled analytically. Previous work [ 1] has suggested 
that even if the surface is 50 or more diameters away 
from the pipe, the flow field and heat transfer will still 
be affected. 

The heat transfer and flow field around a buried 
pipeline were previously analyzed by Bau [2] for 
small modified Rayleigh numbers and small Darcy 
numbers. He obtained a series solution to the govern- 
ing equations based on the Darcy flow model and then 
developed a Nusselt number correlation for Darcy 
flow and small values of the modified Rayleigh num- 
ber as functions of the modified Rayleigh number and 
the cylinder depth. Fand et al. [3] reported similarity 
solutions using Darcy’s model for natural convection 

heat transfer from a horizontal cylinder embedded in 
an infinite porous medium. Recently, Nakayama and 
Pop [4] proposed an unified similarity transforma- 
tion for free, forced and mixed convection in an in- 
finite medium using both the Darcy model and the 
Forchheimer-extended Darcy flow model. 

In this paper, the Forchheimer-extended Darcy 
model for flow in a fluid-saturated porous medium is 
used to describe the flow in the porous medium. The 
flow is assumed to be incompressible and two-dimen- 

sional (r, 0). The porous medium is assumed to be 
uniform, isotropic, and in local thermodynamic equi- 
librium with the saturating fluid. Steady-state solu- 
tions are obtained. However, the numerical solution 
procedure uses the transient energy equation to facili- 
tate convergence. Steady-state flow fields and Nusselt 
number distributions are presented for various values 
of the governing parameters : the modified Rayleigh 
number, Ra*, the Darcy number, Da, and the cylinder 
depth, H. 

MATHEMATICAL MODEL 

Steady-state free convection flow around a cylinder 

buried in a fluid-saturated porous medium (Fig. 1) is 
modeled with the Forchheimer-extended Darcy model 
for flow in porous media. Using dimensionless vari- 
ables and incorporating Boussinesq’s approximation, 
the governing equations relating the pressure drop 
and the flow rate, in polar coordinates (r, Q), are : 

ap 
--- 

& 
u-Ra* sin (e)r= 0 (1) 

1 l3P _~~_ 
r ae 1 v-Ru*cos (O)T= 0. (2) 
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NOMENCLATURE 

c inertial coefficient in Forchheimet Rc* particle Reynolds number 
extension t temperature 

D cylinder diameter T dimensionless temperature excess 
Da Darcy number, k/Rf u radial velocity 

9 gravitational constant c angular velocity 
H distance from cylinder centerline to .Y horizontal coordinate 

upper surface ?’ vertical coordinate. 
k permeability 

N&Y Nusselt number, equation (9) 
P pressure 

; 
Prandtl number Greek symbols 

cond conduction heat transfer from the thermal diffusivity 

cylinder ; thermal expansion coefficient 

a 
radial coordinate 0 angular coordinate (horizontal = 0) 
computational domain outer radius A thermal conductivity 

R, cylinder radius V kinematic viscosity 
Ra* modified Rayleigh number, Fourier number, at/R: 

k,d’(t - t, )R I lva stream function. 

The velocity magnitude is defined as: 1 VI = 
(u*+v*)‘~*. The angle 0 in Fig. 1 is taken to be 
zero at the horizontal axis. The value of the inertia 

A = [l++,V/l’. 

coefficient in the Forchheimer extension, c, was found The non-dimensionalized energy equation is : 
to have a nearly constant value of about 0.55 [5]. 

The continuity equation is : 

(3) 

The velocity equations along with the continuity equa- 
tion can be combined to give the following scalar 
pressure equation in dimensionless form : 

= Ra* 

where the coefficient 

y=R#$- ) 
r=R l._._/J 

FIG. 1. Geometry. 

aT i3T vaT 1 8 
>;++“~+;y==~ 

r & 

where T is the dimensionless temperature excess, 

T(r, 0) = [t(r, 0) - t(r = R)]/[t(R,, 0) -t(r = R)]. 

The boundary conditions are symmetric about the 
centerline : 

T(R,,B) = 1 T(R, 0) = 0 

(6a) 

outflow/inflow boundary condition : P(R, 0) = 0. 

(6b) 

The surfaces at y = H, r = R,, and 0 = frt12 are 
impermeable. R, is the cylinder radius and R is a 
radius large enough to act as the outer radius of the 
computational domain. Since both outflow and inflow 
at the outer computational boundary, r = R, are con- 
vection dominated, the temperature boundary con- 
dition at r = R in equation (6a), is equivalent to set- 
ting the temperature equal to zero at infinity [l] and 
results in a simpler computational scheme. This 
boundary condition will be discussed further with 
the numerical results. The outflow/inflow pressure 
boundary condition at r = R in equation (6b), is a 
consequence of assuming that the angular velocity, 11, 
equals zero at the sufficiently large outer radius of 
the computational domain. The temperature is also 
essentially zero so that, from equation (2), aP/i?fl = 0. 
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Therefore, the pressure along the entire outer compu- 

tational radius is equal to a constant which is selected 

to be zero. The pressure boundary condition at 
the outer boundary allows the flow to leave the upper 
part of the outer boundary, recirculate outside of the 
computational domain and reenter along the lower 
region of the outer boundary. The resulting extended 
flow field has been shown [l] to be a more realistic 
representation of the flow because the boundary does 
not artificially restrict the flow to a limited domain. 

For H/R, less than 40, an outer computational 
radius, R, equal to 50R, was found to be adequate to 
reasonably represent the heat transfer and the flow 
field near the cylinder without requiring an excessively 
large computational domain. For H/R, equal to 40, 
the outer computational radius was increased to 65 R, 
to obtain a reasonable grid arrangement. 

Inspection of equations (4)-(6) shows that the 
governing parameters are the modified Rayleigh num- 
ber, Rn*, the cylinder depth, H, and the parameter 
c Da”*/Pr. Since we desire to study the effect that 
various Darcy numbers have on the flow and heat 
transfer, the Prandtl number in the third governing 
parameter was held constant for a given fluid in the 
saturated porous media. Therefore, the third govern- 
ing parameter is simply the Darcy number. 

The local Nusselt number is defined relative to 
purely conductive heat transfer from the pipe per unit 
length : 

-2GR, g 

Nu = 
RI 

Q 
(7) 

cond 

Bau [2] has shown that the conduction heat transfer 
per unit length of pipe is : 

Q 
27c,lR, 

cond = cash- I (H) ’ 

Therefore, the Nusselt number is simply : 

Nu _-g _ 
RI ar R, 

coshh’ (H). (9) 

NUMERICAL METHOD 

Equations (4) and (5) were solved using MARIAH, 
a finite-element code [6] for analyzing flow in fluid- 
saturated porous medium. Each solution involved 
over 3000 non-uniformly spaced nodes and nearly 
1000 elements clustered near the cylinder, especially in 
the region between the cylinder and the upper surface. 
Figure 2 shows part of the computational grid for 
H/R, = 10. 

Various grid arrangements were tested to verify 
the consistency of the results. Using substantially less 
elements and nodes (over 1500 nodes and approxi- 
mately 500 elements) resulted in a less than 4% change 
in the average Nusselt number along the cylinder. 

The grid parameter having the greatest influence 
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FIG. 2. Computational grid for H/R, = 10. 

over the accuracy of the results was the thickness of 
the first radial element. The thickness of the first radial 
element had to be less than 0.01 R, to obtain consistent 
and accurate results for various geometries. Different 
grid arrangements were used for different cylinder 
depths to appropriately model the different flow fields. 
These different grid arrangements all concentrated 
grid points near the cylinder and in the region above 
the cylinder and were designed so that the thickness 
of the first radial element was always less than 0.01 R, . 
While efforts were made to obtain accurate results, 
the grid arrangements used for the calculations were, 
of course, a trade-off between accuracy and computer 
time. 

Calculations were performed on 386 or 486 per- 

sonal computers. For the greatest number of nodes, 
the computing time was more than 15 h. 

RESULTS WITH DISCUSSION 

Equations (4) and (5) with the boundary conditions 

specified by equation (6) were solved numerically for 
modified Rayleigh numbers from 1 to 400, Darcy 
numbers from pure Darcy flow to Da = 10m4, and 
cylinder depths from 2 to 40. 

Part of a typical flow field for pure Darcy flow with 
H/R, = 4 and Ra* = 10 is shown in Fig. 3. The flow 
field is visualized using the standard definition of the 
stream function in cylindrical coordinates. The flow 
rises due to buoyancy from below the cylinder. Heat 
conducted horizontally away from the cylinder also 
causes fluid far from the cylinder to rise due to buoy- 
ancy. Because of the horizontal impermeable surface 
at H/R, = 4, the fluid turns away from the vertical 
centerline, a line of symmetry. Some of the fluid is 
seen to recirculate within the computational domain 
while the rest of the fluid recirculates far from the 
cylinder. 

The temperature distribution for pure Darcy flow 
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FIG. 3. Streamlines for Ra* = 10 and H/R, = 4 FIG. 5. Local Nusselt numbers for Ra* = 10 and H,‘R, = 4. 

with H/R, = 4 and Ra* = 10 is shown in Fig. 4. Below 
the cylinder outside a radius of approximately 10 R , , 
the temperature is essentially equal to the temperature 
far from the cylinder because the convection heat 
transfer toward the cylinder is significantly greater 
than the diffusion against the flow away from the 
cylinder. Setting the dimensionless temperature 
excess, T, to zero at the outer boundary of the com- 
putational domain, equation (6a), therefore, has no 
effect on the results. The plume of warm fluid rising 
above the cylinder is carried to the side as the flow is 
turned away from the centerline by the upper surface 
of the domain. The thermal energy in the flow is 
quickly dissipated by diffusion and by mixing with 
cooler fluid further away from the cylinder. The fluid 
temperature is lowered to the ambient temperature 
long before reaching the outer edge of the com- 
putational domain. 

The local Nusselt number distribution for pure 
Darcy flow along the cylinder with Ra* = 10 and 
H/R, = 4 is given in Fig. 5. The local Nusselt number 
is very large on the lower part of the cylinder, since 
the fluid is flowing towards the surface and the fluid 
temperature approaching the cylinder is essentially 

the far field temperature. The local Nusselt number 
decreases along the cylinder as the boundary layer 
grows. Near the top where the fluid flows away from 
the surface, the boundary layer is much thicker and, 
hence, the Nusselt number is much lower. 

For sufficiently large modified Rayleigh numbers 

(i.e. relatively large fluid velocities) and small cylinder 
depths, H, a recirculating region develops above the 
cylinder that substantially alters the heat transfer 
along the cylinder. As an example, the flow field for 
Ra* = 100 and H/R, = 2 is shown in Fig. 6. The main 
part of the flow circulates in a clockwise direction as 
in Fig. 3. However, in the region above the cylinder, 
a second vortex appears rotating in the counter-clock- 
wise direction. As shown by the Nusselt number dis- 
tribution in Fig. 7, there is a substantial decrease in 
the heat transfer where the fluid flows away from the 
surface. The heat transfer is again higher at the top of 
the cylinder where the fluid flows down toward the 
cylinder. 

For small modified Rayleigh numbers and small 

cylinder depths, the fluid directly above the cylinder 
is essentially stagnant, as shown in Fig. 8 for Ra* = 10 
and H/R, = 2. It is well known that the stability cri- 
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FIG. 7. Local Nusselt numbers for Ra* = 100 and H/R, = 2. 

terion for the inception of flow in a fluid-saturated 
porous medium between parallel, isothermal plates is 
47~‘. This criterion also serves as a guideline for the 
presence of significant convection currents in the 
region above the cylinder in the present geometry. In 
this region above the cylinder, if the modified Rayleigh 
number based on the cylinder to top surface spacing 
(which in this case is equal to the modified Rayleigh 
number based on the cylinder radius since 
H-R, = R ,) is somewhat less than the parallel-plate 
stability criterion (less than approximately 30), then 
little convection occurs in the region above the cylin- 
der. As the main flow comes up and around from 
below the cylinder, it turns outward and begins to 
recirculate as in Fig. 6. However, since the convective 
velocities are not great, there is insufficient interaction 
with the fluid above the cylinder to cause more than 

a small amount of movement above the cylinder. As 
a consequence, the heat transfer above the cylinder is 
mainly due to conduction. The temperature dis- 
tribution for this situation is shown in Fig. 9 for 
Ra* = 10 and H/R, = 2. The uniform spacing of the 
isotherms above the cylinder indicates that, near the 
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FIG. 8. Streamlines for Ra* = 10 and H/R, = 2. 
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FIG. 9. Isotherms for Ra* = 10 and H/R, = 2. 

top of the cylinder, the heat transfer from the cylinder 
to the top surface is mainly by conduction. 

For small modified Rayleigh numbers, the average 
Nusselt numbers along the cylinder are compared with 
the results of Bau [2] in Fig. 10. Using a series solution, 
Bau developed an expression for the Nusselt number 
as a function of the modified Rayleigh number and 
the cylinder depth for small modified Rayleigh num- 
bers. As can be seen, the present results agree well 
with Bau’s results, especially at low Ra*. Since Bau’s 

results were derived using a truncated series solution, 
agreement at larger values of the modified Rayleigh 
number is not expected. 

Average Nusselt numbers along the cylinder are 
given in Figs. 11, 13, and 14 as functions of the modi- 
fied Rayleigh number, the cylinder depth, and the 
Darcy number. For relatively large Rayleigh numbers, 
Ra* = 100 or greater, the flow field did not reach a 
steady state due to vortices appearing along the upper 
surface. Such vortices have been observed in other 
geometries [7] where warm fluid is flowing along the 
underside of a cold surface in a porous medium. While 
the vortices were not insignificant, the fluctuations in 

3.0 

+ H/R,=3 ~ 

0 10 20 30 40 50 60 
Ra’ H/R, 

FIG. 10. Comparison of current results (symbols) and results 
of Bau [2] (lines). 
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the Nusselt number along the cylinder were less than 
I % of the mean values. The Nusselt number values 
in Figs. 11, 13 and 14 are not only averaged over the 
cylinder surface but are also averaged in time as well 

if a steady-state flow field did not develop. 
Figure I I shows results for pure Darcy flow, i.e. 

when the Forchheimer term is not included in equa- 
tions (I) and (2) and the coefficient. A, in equation (4) 
equals 1. The numerical data show that the Nusselt 
number rapidly increases as the modified Rayleigh 
number increases due to the increased buoyancy force. 
The Nusselt number also increases with increasing 
cylinder depth because the fluid motion is less restric- 
ted and the taller buoyancy plumes contribute more to 
the buoyant force. The relative increase in the buoyant 
force, however, became less as the depth increased. 

As first pointed out by Bau [2] for relatively small 
modified Rayleigh numbers, an interesting balance 
occurs between the conduction heat transfer from the 
cylinder to the top surface; which decreases with 
increasing cylinder depth; and the convection heat 
transfer from the top of the cylinder; which increases 

with increasing cylinder depth. For small modified 
Rayleigh numbers, the total heat transfer from the 
cylinder, which is proportional to the average tem- 
perature gradient along the cylinder surface (see equa- 
tion (9)), is minimized at some value of the cylinder 
depth for a given modified Rayleigh number, Fig. 
12. Thus, proper selection of the cylinder depth can 
reduce the heat loss substantially, more than 50% for 
Ra* = 1. For modified Rayleigh numbers greater than 
approximately 20, there is no minimum with increas- 
ing depth because the convection is always sufficiently 
strong to offset the decrease in the conduction heat 

transfer. 
Figure I3 shows results for a large Darcy number, 

Da = 10e4, when the Forchheimer term is significant. 
The Nusselt number still increases with increasing 
modified Rayleigh number, but not as rapidly as for 
pure Darcy flow, Fig. I I. Increasing the cylinder depth 
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FIG. 12. Heat transfer at small Rayleigh numbers. 
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FIG. 13. Nusselt numbers using Forchheimer-extended 
model, Da = 10m4. 

also increases the Nusselt number because the fluid 
motion is less restricted when the cylinder depth is 
greater. 

Figure I4 shows the average Nusselt numbers for 
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Ra' 

FIG. 11. Average Nusselt numbers using the Darcy 
model. 

flow FIG. 14. Average Nusselt numbers for various Darcy 
numbers and cylinder depths. 
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several cylinder depths as functions of the modified 
Rayleigh number and the Darcy number. The results 
for Darcy number equal to 10m8 are essentially the 

same as pure Darcy flow (no Forchheimer term) so 
the curves overlap. However, the Nusselt number 
decreases as the Darcy number is increased to 10m6 
and lo-“, especially for larger Rayleigh numbers. It 
is clear from equations (1) and (2) that the addition 
of the Forchheimer term to the Darcy model results 

in lower velocities for the same given pressure drop 
(which is determined by the hydrodynamic pressure 
far from the cylinder). Although the flow field is al- 

tered only slightly by the inclusion of the Forchheimer 
term, the velocities are sufficiently smaller to cause the 
Nusselt number to decrease. As seen from equation 
(4), the Forchheimer term is proportional to the 
square root of the Darcy number. Therefore, for 
smaller Darcy numbers, the effect of the Forchheimer 
term is insignificant. The Forchheimer term is also 

proportional to the velocity squared. Therefore, it 
becomes much more significant at higher modified 
Rayleigh numbers where the velocities are much 
higher. For Ra* = 1, the differences are insignificant. 
However, the Nusselt number for larger modified 
Rayleigh numbers and for larger Darcy numbers is 
less than for pure Darcy flow because of the sig- 
nificance of the Forchheimer term. Analysis of 
the numerical results showed that for a maximum 
Reynolds number based on particle diameter greater 
than one, inclusion of the Forchheimer term caused a 
decrease in the average Nusselt number along the 
cylinder. However, the decrease was not significant 
until the Reynolds number based on particle diameter 
was approximately five. This criterion compares well 
with the standard view that the Darcy model is appli- 
cable only when the Reynolds number based on 
particle diameter is of O(1) or less. 

CONCLUSIONS 

The heat transfer along a cylinder buried near the 
surface of a fluid-saturated porous media has been 
shown to depend strongly on the cylinder depth as well 

as the modified Rayleigh number. When the cylinder 
is even as deep as ten cylinder radii below the surface, 

the heat transfer is significantly reduced because the 

flow field is restricted by the upper surface. For high 
modified Rayleigh numbers and when the cylinder is 
near the surface, a recirculation region develops above 
the cylinder causing regions of very high and very low 
heat transfer along the cylinder. For small modified 
Rayleigh numbers, the balance of conduction and 
convection heat transfer along the top surface of the 
cylinder resulted in an optimum burial depth for mini- 
mizing the total heat transfer from the cylinder. It was 
found that the Forchheimer term should be included 
when the Reynolds number based on particle diameter 
was approximately five or more. 
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